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Abstract An assessment of abilities to function indepen-

dently in daily life is an important clinical endpoint for all

Alzheimer’s disease (AD) patients and caregivers. A

mathematical model was developed to describe the natural

history of change of the Functional Assessment Question-

naire (FAQ) from data obtained in normal elderly, mild

cognitive impairment, and mild AD in the AD neuroimaging

initiative (ADNI) study. FAQ is a bounded outcome (rang-

ing from 0 to 30), with 0 scored as ‘‘no impairment’’ and 30

as ‘‘severely impaired’’. Since many normal elderly patients

had 0 scores and some AD patients had scores of 30 in the

ADNI database, a censored approach for handling the

boundary data was compared with a standard approach,

which ignores the bounded nature of the data. Baseline

severity, ApoE4 genotype, age, sex, and imaging biomark-

ers were tested as covariates. The censored approach greatly

improved the predictability of the disease progression in

FAQ scores. The basic method for handling boundary data

used in this analysis is also applicable to handle boundary

observations for numerous other endpoints.

Keywords Bounded outcome data � Disease progression �
Alzheimer’s disease � ADNI

Introduction

Recent advances in the understanding of the underlying

pathophysiology of Alzheimer’s disease (AD) have led to

clinical testing of numerous new treatment modalities aimed

at altering the disease early in its clinical progression, or in

some cases, even before the disease manifests clinical

symptoms. For trials involving these agents, understanding

the natural progression of AD from normal elderly into mild

cognitive impairment and into mild AD is critical for almost

all avenues of research. Bias in the estimate of the disease

progression rate, failure to identify the factors that impact

this rate, or the variability in the endpoint itself may all lead

to trial failure due to insufficient power, insufficient duration

to detect effect, or selection of an insensitive or heteroge-

neous patient population.

The concept of developing models to describe the pro-

gression of disease is not new [1]. In the 1990s Holford

et al. [2–4] first reported a disease progression model to

describe longitudinal changes in AD Assessment Scale-

cognitive (ADAS-cog) data over time in mild to moderate

AD patients. Ito et al. [5] applied a similar disease pro-

gression model to ADAS-cog data obtained from the lit-

erature between 1990 and 2008. Several other disease

progression models for ADAS-cog have also been pub-

lished [6–9] using individual patient level data, enabled
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evaluation of the between subject variability and to test

covariates (such as age, gender, ApoE4 genotype) which

may be related to disease progression.

Although modeling disease progression for ADAS-cog

scores have been intensively studied given its role as a

primary endpoint for almost all mild to moderate AD

clinical trials, no disease progression modeling to describe

functional endpoints has been published (note: Brogren

[10] reported the power to detect a hypothetical treatment

effect when combining ADAS-cog and FAQ based on

simulated values from a linear disease progression model,

although the primary objective of the analysis was not to

describe FAQ scores). However, functional endpoints are

often a co-primary endpoint in many clinical studies.

Patient function, behavioral changes and inability to per-

form daily functional tasks are directly related to caregiver

burden, and as such provide a much more meaningful

construct to caregivers, practitioners, and payers. Function

measurement is also known as activities of daily living

(ADL). It usually contains two components; ‘‘basic-ADLs’’

such as bathing, dressing and toileting for basic self-

maintenance skills, and ‘‘instrumental-ADLs’’ involving

more complex activities, such as preparing a meal, han-

dling finances and shopping. The inability to perform these

tasks due to progression of the disease is often the factor

that forces caregivers to seek long-term care for patients.

Therefore, it is important to develop a quantitative under-

standing of disease progression from a functional per-

spective with a functional endpoint suitable for use in

populations most likely to be studied, including those who

are in earlier stages of the disease, prior to a formal diag-

nosis of AD. The ADNI study includes those patient pop-

ulations, i.e., mild cognitive impairment (MCI) and mild

AD patients, and a suitable functional instrument for these

populations, the Functional Assessment Questionnaire

(FAQ), which consists of ‘‘instrumental-ADL’’ question-

naires, that has also been validated in the normal elderly

community [11].

The FAQ consists of 10 questionnaires to ascertain the

level of performance of daily function activities including:

(a) writing checks, paying bills, or balancing a checkbook;

(b) assembling tax records, business affairs, or other

papers; (c) shopping alone for clothes, household necessi-

ties, or groceries; (d) playing a game of skill such as bridge

or chess or working on a hobby; (e) heating water, making

a cup of coffee, turning off the stove; (f) preparing a bal-

anced meal; (g) keeping track of current events; (h) paying

attention to and understanding a TV program, book, or

magazine; (i) remembering appointments, family occa-

sions, holidays, medications; (j) traveling out of the

neighborhood, driving, or arranging to take public trans-

portation. The four levels ranging from dependence to

independence have scores as follows: dependent = 3,

requires assistance = 2, has difficulty but does by self = 1,

normal = 0. ‘‘Never did, but could do now’’ is assigned a

value of 0 and ‘‘never did and would have difficulty now’’,

a value of 1. The FAQ score is the sum of the individual

activity scores and thus ranges from 0 to 30 inclusive; the

data are bounded by 0 and 30 and are considered

continuous.

In this analysis, a mathematical model was applied to

the FAQ scores in normal elderly (NL), mild cognitive

impairment (MCI), and mild AD patients from the AD

Neuroimaging Initiative (ADNI) database. The goal of

developing this model is to create a tool suitable for trial

simulation activities for the FAQ endpoint. As such, it is

important that the data simulated reflect the natural distri-

bution of the endpoint, i.e. be bounded between scores of

0–30. The lower and upper boundaries also yield non-

normal and atypical data distributions. Lack of normality

induced by these boundary constraints could adversely

affect fitting, estimation, and model testing, and may result

in poor predictions for clinical trial simulations for scores

near the boundaries from individuals (0 for normal elderly

individuals, for example). Therefore, a method for dealing

with these complex types of distributions is applied and

compared with a standard approach. In addition, important

covariates which may affect the disease progression were

also evaluated as a secondary objective in this analysis.

Methods

Population and design

Data used in the preparation of this article were obtained

from the ADNI (www.loni.ucla.edu\ADNI). The ADNI

was launched in 2003 by the National Institute on Aging

(NIA), the National Institute of Biomedical Imaging and

Bioengineering (NIBIB), the Food and Drug Administra-

tion (FDA), private pharmaceutical companies and non-

profit organizations, as a $60 million, 5-year public- private

partnership. The primary goal of ADNI has been to test

whether serial magnetic resonance imaging (MRI), posi-

tron emission tomography (PET), other biological markers,

and clinical and neuropsychological assessment can be

combined to measure the progression of mild cognitive

impairment (MCI) and early AD. Determination of sensi-

tive and specific markers of very early AD progression is

intended to aid researchers and clinicians to develop new

treatments and monitor their effectiveness, as well as lessen

the time and cost of clinical trials. Funding for the original

ADNI (now called ADNI1) ended October 2010. The

ADNI-GO grant will extend the follow-up of subjects who

were enrolled in ADNI1 to allow analysis of all of the

ADNI data that was not able to be done in the initial grant.
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ADNI is the result of efforts of many co-investigators

from a broad range of academic institutions and private

corporations, and subjects have been recruited from over 50

sites across the US and Canada. The Principal Investigator of

this initiative is Michael W. Weiner, MD, VA Medical

Center and University of California—San Francisco. The

initial goal of ADNI was to recruit 800 adults, aged 55–90, to

participate in the research with approximately 200 cogni-

tively normal older individuals to be followed for 3 years,

400 people with MCI to be followed for 3 years and 200

people with early AD to be followed for 2 years. For up-to-

date information, see www.adni-info.org.

The dataset contained 817 subjects consisting of 229

normal, 402 MCI and 186 AD patients (Table 1). Overall,

the age distributions are similar among these populations.

The proportion of females in the MCI group is slightly

lower but similar between the AD and NL groups, with the

majority of subjects being White. The distribution of

ApoE4 carrier status was more frequent in AD patients.

FAQ scores

The FAQ was administered at baseline and at every sub-

sequent in-clinic visit (every 6 months up to 24 months for

AD patients and up to 36 months for NL and MCI patients)

during the ADNI study. All data points available for FAQ

from all patients in the ADNI database were included in the

analysis.

Model building and selection criteria

Base model structure

The underlying concepts for the disease progression model

used to describe FAQ scores were similar to those already

reported by Holford et al. [2–4] and Ito et al. [5, 6]. for

ADAS-cog. A nonlinear mixed-effect likelihood-based

approach was used in this analysis. For a non-randomized

natural history, non- intervention study of a limited dura-

tion, the natural disease progression for FAQ scores can be

described as below:

FAQðtÞ ¼ FAQt¼0 þ a � t þ e ð1Þ

where FAQ(t) is the FAQ score at time t. FAQt=0 is a

parameter predicting the baseline status (=intercept), and a
is the rate of progression of the untreated disease.

The question of whether to implement the model with

linear or non-linear changes in FAQ over time is complex.

One could assume that the disease progression is nonlinear

and try to develop a model in which the slope changes over

time [12]. However, the current data available from the

ADNI database represent only 2–3 years of duration for

each patient, whereas the symptoms of AD progress slowly

and over a much longer period of time, especially at the

early stages of AD. For example, about 10–20 % of people

aged 65 and older have MCI, and it is estimated as many as

15 percent of these individuals progress from MCI to

dementia each year [13]. From this, about half of all people

who have visited a physician with MCI symptoms will

develop dementia in three or four years [13]. Duration of

illness from diagnosis of AD to death varies, but studies

indicate that people aged 65 and older survive an average

of 4–8 years after a diagnosis of AD, with some as long as

20 years [13]. These observations are consistent with the

simulation work done in cognition, where even when a

nonlinear approach is implemented, the disease progression

over 2-year period in mild AD patients appear linear [8].

Therefore, a linear approximation with the current avail-

able ADNI database is considered reasonable given the

2–3 year duration of data available. A non-linear model

approach could be the objective of future research when

sufficient longitudinal information in moderate and severe

Table 1 Demographic

characteristic from ADNI

database

Summarized as

mean ± standard deviation

(SD) for continuous data and

count and percentage (%) for

categorical data

AD MCI NL

No of patients 186 402 229

Age (yr) 75.3 ± 7.6 74.8 ± 7.4 75.9 ± 5.0

Sex female (%) 88 (47.3) 143 (35.6) 110 (48.0)

Baseline FAQ 13.2 ± 6.9 3.9 ± 4.5 0.1 ± 0.6

Baseline MMSE 23.3 ± 2.0 27.0 ± 1.8 29.1 ± 1.0

Baseline CDR-sb 4.3 ± 1.6 1.6 ± 0.9 0.0 ± 0.1

ApoE4 carrier (%) 123 (66.1) 215 (53.5) 61 (26.6)

Race (%)

American Indian or Alaskan Native 0 1 (0.25) 0

Asian 2 (1.1) 9 (2.2) 3 (1.3)

Black or African American 8 (4.3) 15 (3.7) 16 (7.0)

White 174 (93.5) 376 (93.5) 210 (91.7)

More than one race 2 (1.1) 1 (0.25) 0
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AD become available to capture the entire time course of

disease progression in later stages of AD.

Subject-specific random effects (between subject vari-

ability: BSV) were included on the intercept FAQt=0 (g1)

and slope a (g2) where different estimates of the variance

were expected for each patient population (NL, MCI, AD)

since NL patients tend to have 0 or lower scores and AD

patients have higher scores and more variability (see

Fig. 1). Random effects on the intercept FAQt=0 (g1) were

modeled as exponential for a standard approach, since FAQ

scores are always positive (C0); on the other hand, it was

modeled as additive for a censored approach since the

scores become -? to ? after the transformation (see Sect.

‘‘Censored approach’’). Random effects on the slope a (g2)

was model as additive for both approaches, because the

disease progression could be either positive (worse) or

negative (improve). Random Effects were assumed to have

a normal probability distribution with mean 0 and covari-

ance matrix X. Residual error (e) was assumed to have a

normal probability distribution with mean 0 and variance

r2. The observed data indicates that variability of FAQ

scores increased at each visit (for example, standard errors

estimates were 4.5, 5.3, 6.0, 7.5, 8.6 at 0, 6, 12, 24,

36 months in MCI group) and the residual variability was

assumed to increase over time along with the disease

progression, a component allowing the magnitude of the

variability to increase over time was also tested in the

model.

Covariate model

Based on previous knowledge and findings [5–9], covariates

of interest included in this analysis were baseline disease

severity, disease state, age, ApoE4 genotype, sex, and

selected imaging biomarkers, such as hippocampal volume,

ventricular volume, and brain volume. Some covariates,

such as cerebrospinal fluid (CSF) biomarkers, were not tes-

ted in the model as data was missing for nearly half of the

patients in the dataset for these covariates. Details for each

covariate tested in the model are described below.

Baseline severity From the previously published analysis

[5–9], disease severity at baseline is expected to have a

significant influence on both intercept and the rate of dis-

ease progression (a). Therefore, several clinical end points

capturing disease severity were evaluated, including mini

mental state examination (MMSE), clinical dementia rat-

ing—sum of the boxes (CDR-sb), and a composite of

baseline MMSE and FAQ, to find a measure which best

predicts the disease progression manifested in the FAQ

scores. MMSE is a questionnaire based measurement to

screen for cognitive impairment, and typically used in AD

Fig. 1 Histogram of observed FAQ scores by patient populations and by visit
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clinical trials as an inclusion/exclusion criterion. The score

range for MMSE is 0–30, with greater cognitive impair-

ment having lower scores. The CDR assesses dementia

severity by staging, through semi-structured interview of

patients and caregivers, and the subject’s cognitive status is

rated in 6 domains of functioning including memory, ori-

entation, judgment and problem solving, community

affairs, home and hobbies, and personal care. The CDR-sb

score is obtained by summing each of the domain box

scores, with scores ranging from 0 to 18, with more severe

patients having higher scores [14].

The ADAS-cog is a cognitive measure similar to

MMSE. However, ADAS-cog was not tested in the model

as a covariate, because it is not usually measured at

screening due to its complicated procedure, and its high

correlation with MMSE [5, 6]. A pair plot with correlation

coefficient estimates between these clinical endpoints is

provided in the online supplemental material (Fig. S1), as

well as correlation plots between baseline MMSE and FAQ

by patient population (Fig. S2).

Since MMSE and FAQ measure different aspects of

disease, namely cognitive and functional domains respec-

tively, a composite of baseline MMSE and FAQ scores was

proposed as an indicator for the baseline severity. To

account for the opposite direction of MMSE and FAQ

scores (i.e., MMSE = 0 or FAQ = 30 is the maximum

cognitive or functional impairment, MMSE = 30 or

FAQ = 0 is no impairment), the composite score (SEVb)

was derived as shown below:

SEVb ¼ ð30�MMSEbÞ þ FAQbð Þ ð2Þ

The baseline severity was tested in the model either as a

power function or as a linear function. In addition, an

inverse-U type function [15] was tested to describe the

non-linear relationship between the rate of change (slope)

and severity. Although we assumed a linear approximation

for individual patient disease progression (see above), the

population mean slope prediction over a longer period of

time would be theoretically non-linear, i.e., NL or very

early stage of AD would likely have a slope of near 0, a

steeper slope in the middle of the disease stage, and a slope

of near 0 again in later stages of AD as subjects reach the

FAQ boundary. The parameterization below allowed the

model to predict a zero slope at both ends of SEVb (0 and

60), and for the shape of the U-curve to change as a

function of two power coefficient parameters. Figure S3 in

the online supplemental material illustrates the different

shapes obtained with the inverse-U function with different

coefficients. 20 is the approximate mean of the severity

index (SEVb) from the ADNI populations and baseline

severity is described with a function of:

f ðSEVbÞ ¼
SEVb

20

� �coef1

� 60� SEVb

40

� �coef2

ð3Þ

Disease state (‘‘AD pathology’’) The neurodegenerative

process associated with AD is thought to be caused by

various processes that cause neuronal damage. Neuro-

pathological observations of the postmortem AD brain

include the presence of senile plaques—containing pri-

marily b-amyloid (Ab) peptide aggregates—and tangles

comprised of highly phosphorylated s proteins, and it is

considered that Ab lesions proliferate within and among

brain regions once initiated [16]. While some plaques and

tangles may be present in normal elderly, it is considered

that normal elderly (NL) differ in disease state from MCI

and AD patients who manifest ‘‘AD pathology’’ as clinical

symptoms. Therefore, disease state (NL vs AD pathology)

was tested in the model in addition to the disease severity.

Covariate evaluation The effects of continuous covari-

ates (other than baseline severity described above) were

modeled using a normalized power model.

TVP ¼ hTVP �
covi

covref

� �hx

ð4Þ

where TVP is the typical value of a model parameter, hTVP

is an estimated parameter describing the typical population

parameter value, covi is the individual continuous covari-

ate, covref is the reference continuous covariate value (i.e.,

approximate median for the population), and hx is an

estimated parameter (power coefficient) describing the

magnitude of the covariate-parameter relationships.

Dichotomous covariates (ApoE4 genotype, sex) were

mapped to a value of 0 or 1 and their effects were estimated

in the model as below. ApoE4 genotype was categorized

into ‘‘non-carrier’’ (APOE4 = 0) and ‘‘carrier’’

(APOE4 = 1), where subjects having at least 1 ApoE4

allele (e4) were considered carriers. Gender was Male

(SEX = 0) or Female (SEX = 1).

TVP ¼ hTVP � hcov
x ð5Þ

where cov is the value assigned to designate the presence or

absence of the discrete covariate, hx is an estimated

parameter describing the magnitude of the covariate-

parameter relationship.

For the censored approach, covariates were tested in a

linear fashion to allow flexibility during parameters esti-

mation since FAQ scores become -? to ? after the

transformation (see Sect. ‘‘Censored approach’’).

TVP ¼ hTVP þ
Xn

i¼1

covi � hi ð6Þ
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Censored approach

The range of the FAQ is 0–30, and these lower and upper

boundaries can result in non-normal and atypical data

distributions. These issues have been discussed, and a

method to handle bounded outcome data was recently

published by Hutmacher et al. [17]. For this method, the

non-boundary data are scaled between 0 and 1 and a

transformation family is applied which provides flexibility

for handling the difficult data distribution shapes. The

approach considers the boundary data as censored when

formulating the likelihood. This is based on the assumption

that the boundary data are reported as such because the

measurement instrument lacks sufficient precision to dif-

ferentiate the underlying true measurements from the

boundaries. This is a similar concept to the censoring

approach applied to PK concentration data that are below

limit of quantification [18].

For FAQ, the ‘‘non-boundary data’’ (ranging from 1 to

29; 1 and 29 being the smallest and largest FAQ values that

are not on the boundary) are divided by 30 to yield a result

between 0 and 1—i.e. z = FAQ/30. Then the transforma-

tion is applied:

y ¼ hðFAQðtÞÞ ¼ log
1�zð Þ�k�1

k

h i
if k 6¼ 0

log � log 1� zð Þð Þ if k ¼ 0

(

z 2 0; 1ð Þ; y 2 �1;1ð Þ
ð7Þ

The parameter k governs the transformation. When

k = 1 the transformation reflects a logit function, and for

k = 0, the complimentary log–log.

A general nonlinear mixed effects model can be con-

structed using the transformed response:

y ¼ h FAQðtÞð Þ ¼ FAQt¼0 þ a � t þ e ¼ l tð Þ þ e ð8Þ

Because the range of y is (?, -?) and a flexible

transformation has been applied, the normality assumption

of e is more tenable, but is not guaranteed.

As stated, the data on the boundaries, FAQ = 0 or 30, are

considered censored observations when constructing the

likelihood. The conditional likelihood contribution with

respect to the original FAQ scale for a single observation is:

‘ FAQ gjð Þ ¼ /
h FAQð Þ � lðtÞ

r

� �
J FAQ; kð Þ

� �I FAQ2 0;30f gð Þ

U
yL � l

r

� �I FAQ¼0ð Þ
1� U

yH � l
r

� �h iI FAQ¼30ð Þ

ð9Þ

where l (conditional mean) is defined in (8); / is the normal

density; r is variance for FAQ in the transformed scale;

J FAQ; kð Þ ¼ o h FAQð Þ½ �=oFAQ is the Jacobian; U is the

cumulative normal distribution function; yL ¼ h FAQ ¼ 1ð Þ
and yH ¼ h FAQ ¼ 29ð Þ are the transformed values of

FAQ = 1 and FAQ = 29, respectively; and I(•) is the

indicator function which equals 1 when the logical expres-

sion is true and 0 otherwise. Using the minimum (FAQ = 1)

and maximum (FAQ = 29) values from the open interval

maximizes the conditional likelihood [19]. The subject’s

aggregate conditional likelihood is the product of his indi-

vidual likelihoods assuming independence.

Model selection criteria

The model building strategy is based on modification of

different approaches previously discussed and widely used

in pharmacometrics communities [20–23]. Covariates were

added one by one in a forward stepwise manner, examining

the change in minimum objective function values (OFV) in

hierarchical models, and also the precision of the parameter

estimates. During model building, the hypotheses and

goodness of fit of different models to the data were eval-

uated using the following criteria: change in the minimum

objective function, visual inspection of different scatter

plots including population and individual predicted versus

observed value and conditional weighted residuals, preci-

sion of the parameter estimates, as well as decreases in

both inter-individual variability and residual variability.

These criteria were used only when the minimization step

was successful and standard errors of parameter estimates

were obtained using the covariance step. The difference in

MOF values between 2 hierarchical models is assumed to

have an approximate v2 probability distribution with the

number of degrees of freedom equal to difference in the

number of parameters between the 2 models. Any decrease

of [6.6 in the objective function during model building

indicated that a proposed model with 1 additional param-

eter provided a better fit than the reduced reference model

(p \ 0.01). The covariate(s) of interest were kept in the

model if the model was stable and its parameter estimate

demonstrated acceptable precision (e.g., the relative stan-

dard error (RSE) \50 %), also monitor the ratio of eigen-

values (condition number) \1000 at each model run to

evaluate any sign of over parameterizations, regardless of

its statistical significance (using OFV as reference).

Model fitting was performed using a population analysis

approach (NONMEM Version VII, Level 1.2, ICON

Development Solutions, Ellicott City, MA) with FOCE for

the standard approach and Laplace Conditional Estimation

method for the censored approach. Diagnostic graphics and

post-processing of NONMEM output, and simulation were

performed using R (version 2.13.2 or higher).

Performance evaluation (predictive check)

Once the final model was identified, 500 datasets identical

in structure and covariate values to the original dataset
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were simulated, using the parameter estimates from the

final model to evaluate the model performance. The

longitudinal FAQ scores over time by population group

(AD, MCI, NL) were generated and visually compared

with the observed data at each selected percentile (5th,

50th, 95th). The reason for visualizing the data by pop-

ulation group (AD, MCI, NL), rather than ‘‘binned’’ by

the baseline severity is because most clinicians and

researchers in the AD community are accustomed to

categorizing patients into NL, MCI, and AD groups. A

complete description of the diagnosis criteria for catego-

rization of NL, MCI, and AD is found in the ADNI

protocol (www.adni-info.org). The number of observa-

tions at both ends (FAQ scores of 0 and 30) were also

counted from observed data and the simulated data and

then compared (reported as a percentage) to check whe-

ther the model was able to adequately recreate the fre-

quency nature of the bounded data.

Results

Observed longitudinal FAQ data are visualized as histo-

grams by patient group (NL, MCI, AD) and by visit

(month) in Fig. 1. The histograms highlight the complex

distribution of the data. A large number (87.9 %) of zero

scores (lower boundary) were observed in NL patients

during the whole study duration, and at baseline (27.3 %)

in the MCI patients. Also, scores of 30 (upper boundary)

were observed in AD patients (1.5 %) toward the end of the

study.

Base model versus final model (standard approach)

As described in the methods section, model development

was initiated with the base model, and covariates of interest

were tested in a forward step-wise fashion. Baseline sever-

ity, disease state, and ApoE4 genotype were significant

Fig. 2 Diagnostic plots for base model versus final model (standard approach)
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covariates impacting the rate of disease progression (a).

Baseline severity and disease state were covariates on the

intercept (Int). Age, sex, hippocampal volume and ven-

tricular volume were not statistically significant covariates

either on the intercept or slope.

A composite of baseline MMSE and FAQ scores

(composite baseline severity) was the best indicator for

baseline severity (based on the objective function values

and diagnostic plots), compared with other severity indi-

cators (baseline MMSE or baseline CDR-sb). For disease

progression, an inverse-U as a function of composite

baseline severity, in which slope theoretically becomes

zero at both ends, best described the relationship for the

change in slope (i.e., patients with 0s (normal elderly) were

likely to stay 0 or show little progression from 0, and

patients with 30s were unlikely to show a large decline

(improvement) or worsening). In clinical terms, the rate of

disease progression is, in part, a function of the baseline

severity of the cognitive or function deficits, with more

moderately affected populations demonstrating more rapid

deterioration in cognition or function compared to more

mildly impacted populations. The mathematical expression

of the final model is as below:

FAQ tð Þ ¼ Int � SEVb

20

� �hi

� exp g1ð Þ

þ a � f ðSEVbÞ � hApoE4
iþ1 þ g2

� �
� t þ e

where intercept (Int) and slope (a) were estimated for each

disease state (NL vs AD-pathology). The parameter esti-

mates from the base model and the final model using the

standard approach are summarized in Table 2. The good-

ness of fit plots were also evaluated (Fig. 2). Overall, the

final model parameters were well estimated with reason-

able confidence intervals, and the model prediction was

improved from the base model to the final model, with

good correlation between population level predictions and

individual predictions versus observations. The weighted

residuals were in general randomly scattered across the

range of predicted values.

To ascertain the appropriateness of covariates included

in the final model, plots of random effect estimates on

Table 2 Parameter estimates for standard approach

Parameter Parameter estimates (%RSE) Bootstrapa

Median [95 % CI]
Base model Final model

FAQb IntNL 3.62 (9.50) 1.53 (30.8) 1.74 [0.257–8.79]

IntAD-pathology – 13.0 (1.35) 13.0 [12.6–13.3]

bSEV effect – 1.34 (2.30) 1.34 [1.28–1.40]

Slope (rate of disease progression) aNL (pt/month) 0.0438 (7.72) 0.0422 (33.6) 0.0385 [0.00671–0.0856]

aAD-pathology – 0.220 (12.2) 0.220 [0.163–0.276]

Inv-U coef1 – 0.819 (21.9) 0.849 [0.413–1.29]

Inv-U coef2 – 2.63 (25.9) 2.73 [1.05–4.54]

ApoE4 on a – 1.48 (11.6) 1.47 [1.18–1.89]

BSV (g1) for FAQb NL 531 (35.8) 5.21 (9.25) 4.82 [0.00052–21.4]

MCI 1.1(11.8) 0.175 (18.3) 0.175 [0.114–0.243]

AD 1.72 (13.6) 0.0201 (24.7) 0.0200 [0.0116–0.0321]

BSV(g2) for Slope NL NA NA NA

MCI 0.0722 (12.6) 0.0469 (15.6) 0.0464 [0.0346–0.0649]

AD 0.142 (16.5) 0.077 (27.9) 0.0737 [0.0400–0.123]

Correlation g1 and g2 NL NA NA NA

MCI -0.0224 0.0178 0.0170 [0.0005–0.0331]

AD 0.281 0.0197 0.0194 [0.00517–0.0353]

Residual variability 2.22 (3.36) 1.71 (9.67) 1.71 [1.53–1.90]

Time-varying residual variability – 0.019 (18.3) 0.0188 [0.0106–0.0259]

OFV (objective function value) 12,839 11,281

Shrinkage for g1 (intercept) are 66.0, 34.4, 20.6 % for NL, MCI, AD, respectively, and shrinkage for g2 (slope) are 11.2, 14.1 % for MCI, AD,

respectively

BSV between subject variability, NA not estimated (model didn’t converged); –, not included in the base model
a Nonparametric bootstrap stratified by patient population (n = 1000)
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Fig. 3 ETA plot by covariate for base model versus final model (standard approach). Note age and gender were not significant covariates and not

included in the final model
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intercept (g1) and slope (g2) were generated by covariates

of interest (disease state, ApoE4 genotype, sex, age,

baseline severity) from the base and final model (Fig. 3).

Trends in the distribution of random effects for the base

model (no covariates in the base model) were observed.

Upon inclusion of the covariates into the model, the trends

were reduced, with the distribution dispersed around zero,

confirming appropriateness of the final model. Sex and age

were not significant in the covariate evaluation, and it was

also visually confirmed that there was no trend in the dis-

tribution of random effects for both base and final model.

Base model versus final model (censored approach)

A censored model was tested with the FAQ data using a

similar model building/covariate testing approach as

described above, and these results were compared with the

standard approach.

Very similar to the standard approach, baseline severity,

disease state, and ApoE4 genotype were significant

covariates impacting the rate of disease progression, and

baseline severity and disease state were significant

covariates on the intercept. Like the uncensored approach,

age and sex were not statistically significant covariates

either on the intercept or slope. An attempt was made to

test imaging biomarkers, but the results were similar to the

standard approach in that these were not significant,

probably due to the confounding effects amongst imaging

biomarkers, and correlation with the severity and/or ApoE4

genotype, which were already in the model. The NON-

MEM control file for the final model using the censored

approach is provided in the ‘‘Appendix‘‘ section. The

mathematical expression of the final model is as below:

FAQ tð Þtransformed¼ Int þ SEVb � hi þ g1ð Þ
þ aþ SEVb � hiþ1 þ ApoE4 � hiþ2 þ g2ð Þ � t þ e

where intercept (Int) and slope (a) were estimated for each

disease state (NL vs AD-pathology) in a transformed scale.

The parameter estimates from the base model and the final

model using the censored approach are summarized in

Table 3. Similar to the standard approach, the final model

parameters were well estimated with reasonable confidence

intervals, and the model prediction was improved from the

Table 3 Parameter estimates for censored approach

Parameter Parameter estimates (%RSE) Bootstrapa

95 % CI
Base model Final model

FAQb IntNL -2.57 (0.147) -5.51 (5.17) -5.50 [-5.97, -4.58]

IntAD-pathology – -3.82 (1.62) -3.82 [-3.96, -3.67]

bSEV effect – 0.197 (2.67) 0.198 [0.185, 0.213]

Slope (rate of disease progression) aNL (pt/month) 0.0506 (0.0630) -0.0579 (24.2) -0.060 [-0.0878, -0.0354]

aAD-pathology – 0.0263 (22.6) 0.0263 [0.0139,0.0384]

k (transform) 1.73 (0.0728) 1.87 (5.45) 1.91 [1.57, 2.32]

bSEV effect – 0.00142 (29.6) 0.00144 [0.000502, 0.00255]

ApoE4 effect – 0.0268 (21.4) 0.0270 [0.0156, 0.0386]

BSV (g1) for FAQb NL 8.92 (19.2) 1.52 (48.1) 1.52 [0.101, 2.81]

MCI 1.93 (9.38) 0.394 (14.5) 0.390 [0.295, 0.507]

AD 8.57 (10.9) 0.0972 (45.4) 0.109 [0.0465, 0.204]

BSV(g2) for Slope NL 0.0331 (29.0) 0.00644 (34.8) 0.00640 [0.00326, 0.0106]

MCI 0.00296 (12.9) 0.0032 (13.6) 0.00324 [0.00230, 0.00458]

AD 0.00268 (22.4) 0.00347 (24.3) 0.00358 [0.00183, 0.00657]

Correlation g1 and g2 NL 0.495 0.0512 0.0455 [0.00296, 0.108]

MCI 0.0092 0.00404 0.00392 [-0.00274, 0.0107]

AD 0.0712 0.0183 0.0168 [0.00842, 0.0261]

Residual variability 0.774 (0.0984) 0.656 (8.19) 0.657 [0.595, 0.721]

Time-varying residual variability – 0.0123 (17.0) 0.0124 [0.00632,0.0187]

OFV (objective function value) 14,667 13,180

Parameter estimates are on transformed scale

Shrinkage for g1 (intercept) are 51.0, 23.7, 11.6 %, and shrinkage for g2 (slope) are 53.4, 20.1, 31.2 % for NL, MCI, AD, respectively

BSV between subject variability; –, not included in the base model
a Nonparametric bootstrap stratified by patient population (n = 1000)
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Fig. 4 ETA plot by covariate for base model versus final model (censored approach). Note age and gender were not significant covariates and

not included in the final model

J Pharmacokinet Pharmacodyn (2012) 39:601–618 611

123



base model to the final model. The diagnostic plot showed

that the final model was improved with good correlation

between population level predictions and individual pre-

dictions versus observations (Fig. S4 in the online sup-

plemental material), and the boxplots of random effect

estimates on intercept (g1) and slope (g2) demonstrated that

the trend in the distributions were reduced and dispersed

around zero with the final model (Fig. 4). Note that pre-

dictions from the censored model can be back transformed

to the original FAQ score scale whereas its parameter

estimates can’t, and the parameter estimates in Table 3 are

reported on a transformed scale. Therefore, it is difficult to

directly compare the population parameter estimates (such

as slope estimate, a) with those from the standard

approach.

Model evaluation

The predictive performance of the final model was assessed

by evaluating whether the selected statistics of the

observed data were contained within those predicted by the

final model over a number of simulations. Five hundred

data sets were simulated from the final model for each of

the standard and censored approach. For the censored

model, the simulated values less than 1 were treated as 0,

and simulated values greater than 29 were treated as 30

during the numerical predictive check.

The median, 5th and 95th percentile for 90 % predicted

intervals from the model (shade area) were compared with

the observed data in Fig. 5 (median is solid line, 5th and

95th percentile are dashed lines). Overall, the median

predictions were comparable with those for observed data

for both the standard and censored model approaches, but

the censored model captures the median value as well as

5th and 95th percentiles for NL, MCI, and AD patient

populations better than the standard approach. In addition,

negative values (\0) were simulated for NL and MCI

patients and [30 values in AD patients with the standard

approach. These problems were corrected with the cen-

sored approach. Note that the 5th percentile prediction

intervals with the censored approach are ‘‘0’’ for NL and

MCI patients and overlapped with the horizontal line at

zero; therefore it is not clearly seen in these plots.

To further investigate the predictive performance of

the censored approach, the number of simulated values

for bounded data values (0 and 30) were counted from

each simulation and compared with the percentage of

total counts observed in the original data (Table 4). The

percentage for FAQ = 0 and FAQ = 30 were 36.6 %

and 0.463 % respectively in the observed data, and

34.2 % [32.5–35.8] (95 % prediction intervals) and

0.354 % [0.191–0.572] from the simulations. When these

results were further evaluated by patient population, the

percentage for observed FAQ = 0 were 24.6, 11.7,

0.272 % for NL, MCI, AD patients respectively, and 25.2

[24.2–26.1], 8.87 [7.41–10.2], 0.136 % [0.00–0.354] from

simulations, indicating that FAQ = 0 was slightly under

predicted in MCI patients, reflecting the slight under pre-

diction for overall FAQ = 0 (36.6 % observed vs 34.2 %

[32.5–35.8] simulated). The percentage for observed

FAQ = 30 were 0.0, 0.136, 0.327 % for NL, MCI, AD

patients, and the percentage from the simulations were 0.0

[0.0–0.0272], 0.0545 [0.0–0.163], 0.300 % [0.163–0.490],

respectively. The trends were consistent with observed data

across patient populations for both boundaries (FAQ = 0

and 30) demonstrating that the censored model was able to

predict the boundary data.

Discussion

A disease progression model to describe longitudinal FAQ

scores in healthy normal elderly (NL), MCI and mild AD

patients was developed. For this analysis, we assumed a

linear disease progression within an individual patient

based on the available data (up to 3 years). A non-linear

curvature of disease progression within a patient can typ-

ically be seen if patients are followed long enough, such as

in a community-based 10-year follow up study, but typi-

cally not within the time frame of a randomized controlled

clinical trial. Nevertheless, the rate of progression will be

dependent on the baseline severity of disease. The linear

progression on the transformed scale for the censored

approach will lead to nonlinearity when predicting or

simulating FAQ scores.

One of the important elements for disease progression

modeling in AD is to use the model as a tool to simulate

potential ranges of possible clinical trial outcomes, and to

identify designs and inclusion/exclusion criteria that may

lead to more sensitive trials. This can be accomplished by

either by selecting a population or study design that leads

to decreased variance in the endpoint for the population

studied, or by selecting a population that progresses more

rapidly, such that a greater magnitude of treatment effect

would be observed over a shorter period of time. As such, it

is important to find covariates and baseline characteristics

which are good predictors of disease progression and that

are easy to implement or collect. Baseline disease severity

was the most influential covariate on the intercept (OF

decrease *1078) as well as for determining the rate of

change in patient function (additional OF decrease *229).

ApoE4 carrier status was also indentified as a covariate in

the model. These findings are very similar with the previ-

ous analyses for rates of change for ADAS-cog [6–9].

Imaging biomarkers (hippocampal volume and brain
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volume) were not found to be significant covariates, likely

due to the confounding effects between these imaging

biomarkers and baseline severity, ApoE4 status or age, all

of which were already in the model. A thorough analysis

will be necessary with a much larger database to evaluate

all the possible covariates and the confounding nature of

them in future work. It is possible that in the future models

other genotypes recently identified in large genome-wide

association study (GWAS) studies [24] may also be

important covariates, along with other known risk factors

such as cardiovascular risk.

The diagnosis of NL, MCI, and AD are very complex,

including cognitive, functional, and global tests and

sometimes including caregiver impression. While all these

clinical endpoints (MMSE, FAQ, CDR-sb) are validated

tools to evaluate each component of disease, there is no

single measurement which can describe the patient’s dis-

ease severity. A composite score comprised of MMSE and

FAQ (severity composite score) was selected as the

severity index in this analysis, as was the best predictor of

baseline FAQ compared to other baseline severity scores

(baseline MMSE alone or baseline CDR-sb). ADAS-cog

Fig. 5 Visual predictive check from 500 simulations: standard approach (a) versus censored approach (b). Note 5th percentile prediction

intervals with censored approach are ‘‘0’’ for NL and MCI patients; therefore it is not clearly seen in these plots
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was another candidate to describe baseline severity but it is

often not measured at screening due to its complexity and

need for trained staff to conduct the test. Another future

possibility based on item-response theory (IRT) is ‘‘cog-

nitive disability’’ scores which was recently introduced as a

new diagnostic approach providing a more sensitive mea-

surement [25], that potentially can allow for a combination

of different cognitive assessments, such as the mini-mental

state examination (MMSE), into one common pharmaco-

metric model [26]. The IRT theory has a great potential to

measure the overall patient disability in AD-pathology, by

combining different cognitive and function measurements

together, and it may be suitable to describe the patient

severity from the very early stage to the advanced AD.

Better tools or measurements need to be established and

validated to predict disease progression in AD. Various

biomarkers such as Ab amyloid concentrations in CSF or

imaging data (MRI, PET) are expected to provide such

information in the near future, and many researchers,

pharmaceutical companies, and regulatory agencies are

currently investigating these for inclusion criteria for

clinical trials. These biomarkers may be useful as objective

surrogate measures of severity index in the model once

established and validated in the future.

Loss of function is also part of the aging process, and the

ADNI data has non-AD healthy elderly controls that pro-

vide estimates for the very slow loss of function in this

population as well. From a modeling perspective however,

the fact that the large portion of data in healthy elderly

patients remained as scores of zero during the 36 month

study may cause biased estimates in the model parameters

and skewed random effects distributions if a standard

model development approach is utilized even if normal

elderly and AD-pathology patients are estimated sepa-

rately. In fact, scores below 0 are simulated with the

standard approach for the NL and MCI patients (Fig. 5),

indicating that there is a limitation of the standard approach

model to emulate real world data. On the other hand, the

censored approach was able to account for the nature of

bounded FAQ scores (Fig. 5), and the simulated percentage

(%) of scores at 0 and 30 for each patient population (NL,

MCI, AD) are very close to the observed data (Table 4),

indicating that the censored approach handles the non-

normal and atypical data distribution appropriately.

Very slight under estimates for the simulated percentage

(%) of FAQ score zero with MCI patients were observed in

the censored model (Table 4). A recent publication indi-

cated that there are bimodal distributions in their biomarker

profiles and disease progression characteristics (i.e., con-

verted or not converted from MCI to AD) from ADNI data

[27], implying there are hidden covariates that may explain

more of the variability observed, and those covariates

might be a combination of diagnosis criteria or various

biomarkers which are still under investigation discussed

above.

The censoring approach is motivated by the assumption

that the measurement device, in this case the FAQ score, is

‘‘insensitive’’ near the boundaries (i.e., 0 and 30). That is,

subjects might have a 0 score at a certain time point, but if

the FAQ were sensitive enough to detect a small differ-

ence, a number other than 0 would be reported. For some

endpoints or patient populations, this might not be a valid

assumption. A 0 might actually represent total absence of

disease. When this is the case, a more complicated model

must be entertained; one that allows both types of 0s—i.e.,

a 0 for lack of sensitivity for measuring disease and a 0 that

represents lack of disease. For the data within the ADNI

dataset, the censored model adequately predicts the per-

centage of 0s. As an additional evaluation of the censored

model, a within-subject mixture model (see Hutmacher

et al. [17]) which allows for both types of 0s was fitted. The

parameter which governs the probability of a 0 being lack

of disease was estimated to be extremely small. As a result,

the interpretation that the 0s in the data set are from some

lack of resolution of FAQ near 0, which is assumed for the

censored model, seems valid.

In conclusion, both standard and censored approaches

can describe longitudinal FAQ scores and parameter esti-

mates and the selection of influential covariates for both

approaches was similar. However, visual predictive checks

showed that a large number of negative scores (less than 0)

were simulated for NL and MCI patients with the standard

Table 4 Percentage of simulations for bounded outcomes (FAQ = 0 and 30) with censored approach

FAQ = 0 FAQ = 30

Observed (%) Simulated (%) Observed (%) Simulated (%)

Total 36.6 34.2 [32.5–35.8] 0.463 0.354 [0.191–0.572]

NL 24.6 25.2 [24.2–26.1] 0.0 0.0 [0.0–0.0272]

MCI 11.7 8.87 [7.41–10.2] 0.136 0.0545 [0.0–0.163]

AD 0.272 0.136 [0.00–0.354] 0.327 0.300 [0.163–0.490]

[]—95 % predicted intervals, n = 500 simulations
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approach. On the other hand, the censored approach cap-

tured well the frequency of the boundary data (0 and 30),

indicating that the censored model can describe the

boundary observations more precisely. The model predic-

tions at the 5th, 50th and 95th percentiles were also better

with the censored approach compared with the standard

approach. The censored approach greatly improved the

predictability of the disease progression in FAQ scores.

The basic method for handling boundary data described

here is also generally applicable to handle boundary

observations for numerous other endpoints.
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